首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2795篇
  免费   559篇
  国内免费   765篇
化学   2973篇
晶体学   105篇
力学   88篇
综合类   22篇
数学   6篇
物理学   925篇
  2024年   2篇
  2023年   43篇
  2022年   86篇
  2021年   102篇
  2020年   185篇
  2019年   135篇
  2018年   100篇
  2017年   120篇
  2016年   195篇
  2015年   156篇
  2014年   171篇
  2013年   354篇
  2012年   227篇
  2011年   208篇
  2010年   201篇
  2009年   156篇
  2008年   166篇
  2007年   176篇
  2006年   212篇
  2005年   159篇
  2004年   166篇
  2003年   159篇
  2002年   73篇
  2001年   80篇
  2000年   62篇
  1999年   57篇
  1998年   44篇
  1997年   61篇
  1996年   39篇
  1995年   47篇
  1994年   37篇
  1993年   31篇
  1992年   17篇
  1991年   18篇
  1990年   17篇
  1989年   16篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1968年   1篇
排序方式: 共有4119条查询结果,搜索用时 312 毫秒
11.
本文以聚乙二醇(PEG)为相变材料,通过添加不同的无机填料,采用熔融共混浇筑方式制备了导热增强型相变复合材料。 通过扫描电子显微镜(SEM)、热常数分析仪、差示扫描量热仪(DSC)、红外热成像和热重分析仪研究了所制备复合材料的微观结构、导热性能与相变过程。 研究结果表明,相比于碳酸钙和氧化铝,在相同添加含量下,氮化硼(BN)可有效提高PEG的导热系数,当BN质量分数为40%时,导热系数可达到3.40 W/(m·K);当填料添加量相同时,片状BN和不规则纳米碳酸钙(CaCO3)比球形氧化铝(Al2O3)对PEG具有更加优良的定型效果,在相变过程中,能够更加有效阻隔PEG的流动,保持复合材料的形状稳定性。  相似文献   
12.
Recent research has focused on increasing the evidentiary value of latent fingerprints through chemical analysis. Although researchers have optimized the use of organic and metal matrices for matrix‐assisted laser desorption/ionization‐mass spectrometry imaging (MALDI‐MSI) of latent fingerprints, the use of development powders as matrices has not been fully investigated. Carbon forensic powder (CFP), a common nonporous development technique, was shown to be an efficient one‐step matrix; however, a high‐resolution mass spectrometer was required in the low mass range due to carbon clusters. Titanium oxide (TiO2) is another commonly used development powder, especially for dark nonporous surfaces. Here, forensic TiO2 powder is utilized as a single‐step development and matrix technique for chemical imaging of latent fingerprints without the requirement of a high‐resolution mass spectrometer. All studied compounds were successfully detected when TiO2 was used as the matrix in positive mode, although, generally, the overall ion signals were lower than the previously studied CFP. TiO2 provided quality mass spectrometry (MS) images of endogenous and exogenous latent fingerprint compounds. The subsequent addition of traditional matrices on top of the TiO2 powder was ineffective for universal detection of latent fingerprint compounds. Forensic TiO2 development powder works as an efficient single‐step development and matrix technique for MALDI‐MSI analysis of latent fingerprints in positive mode and does not require a high‐resolution mass spectrometer for analysis.  相似文献   
13.
In recent decades, nanotechnology is growing rapidly owing to its widespread application in science and industry. The aim of the experiment was chemical characterization and evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing activities of titanium nanoparticles using aqueous extract of Ziziphora clinopodioides Lam leaves (TiNPs@Ziziphora). These nanoparticles were characterized by fourier transformed infrared spectroscopy (FT‐IR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectroscopy (EDS), and UV–visible spectroscopy. The synthesized TiNPs@Ziziphora had great cell viability dose‐dependently (Investigating the effect of the plant on human umbilical vein endothelial cells (HUVECs) cell line) and revealed this method was nontoxic. Then, 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was done to assess the antioxidant properties, which indicated similar antioxidant potentials for TiNPs@Ziziphora and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum Fungicidal Concentration (MFC) were specified by macro‐broth dilution assay. The data were analyzed by SPSS 21 software (Duncan post‐hoc test). TiNPs@Ziziphora indicated higher antibacterial and antifungal effects than all standard antibiotics (p ≤ 0.01). Also, TiNPs@Ziziphora inhibited the growth of all bacteria at 2‐16 mg/ml concentrations and removed them at 2‐32 mg/ml concentrations (p ≤ 0.01). In case of antifungal properties of TiNPs@Ziziphora, they prevented the growth of all fungi at 2‐8 mg/ml concentrations and destroyed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% TiO2 ointment, treatment with 0.2% Z. clinopodioides ointment, and treatment with 0.2% TiNPs@Ziziphora ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3 cm section was prepared from all dermal thicknesses at day 10. Use of TiNPs@Ziziphora ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In conclusion, the results revealed the useful non‐cytotoxic, antioxidant, antibacterial, antifungal, and cutaneous wound healing effects of TiNPs@Ziziphora.  相似文献   
14.
A number of oxotitanium(IV) complexes of the type TiOL with bis‐unsymmetric dibasic tetradentate Schiff base (LH2) containing ONNO donor atoms have been synthesized. Mono‐Schiff base (OPD‐HNP) was prepared by the condensation of 1:3 molar ratio of 2‐hydroxy‐1‐naphthaldehyde (HNP) with o‐phenylenediamine (OPD). Dibasic unsymmetric tetradentate diamine Schiff bases were prepared by the reaction of OPD‐HNP with 2‐hydroxyacetophenone, 2‐hydroxypropeophenone, benzoylacetone, acetylacetone and ethylacetoacetate. Further, titanylacetylacetonate was reacted with these ligands to obtain their metal complexes. On the basis of analytical and physiochemical data, the formation of complexes as TiOL was suggested having square pyramidal geometry. Quantum mechanical approach also confirmed this geometry. The assessment of the synthesized ligands and their complexes showed that some behave as good inhibitors of mycelial growth against selected phytopathogic fungi but weak inhibitors against some selected bacteria. A few of them also showed antioxidant properties.  相似文献   
15.
The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV, GeIV, and TiIV. Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV, GeIV, and TiIV, and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.  相似文献   
16.
17.
We describe the ultrasonic assisted preparation of barium stannate-graphitic carbon nitride nanocomposite (BSO-gCN) by a simple method and its application in electrochemical detection of 4-nitrophenol via electro-oxidation. A bath type ultrasonic cleaner with ultrasonic power and ultrasonic frequency of 100 W and 50 Hz, respectively, was used for the synthesis of BSO-gCN nanocomposite material. The prepared BSO-gCN nanocomposite was characterized by employing several spectroscopic and microscopic techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, fourier transform infra-red, field emission scanning electron microscopy, and high resolution transmission electron microscopy, to unravel the structural and electronic features of the prepared nanocomposite. The BSO-gCN was drop-casted on a pre-treated glassy carbon electrode (GCE), and their sensor electrode was utilized for electrochemical sensing of 4-nitrophenol (4-NP). The BSO-gCN modified GCE exhibited better electrochemical sensing behavior than the bare GCE and other investigated electrodes. The electroanalytical parameters such as charge transfer coefficient (α = 0.5), the rate constant for electron transfer (ks = 1.16 s−1) and number of electron transferred were calculated. Linear sweep voltammetry (LSV) exhibited increase in peak current linearly with 4-NP concentration in the range between 1.6 and 50 μM. The lowest detection limit (LoD) was calculated to be 1 μM and sensitivity of 0.81 μA μM−1 cm−2. A 100-fold excess of various ions, such as Ca2+, Na+, K+, Cl, I, CO32−, NO3, NH4+ and SO42− did not able to interfere with the determination of 4-NP and high sensitivity for detecting 4-NP in real samples was achieved. This newly developed BSO-gCN could be a potential candidate for electrochemical sensor applications.  相似文献   
18.
A series of carbon-coated, nitrogen-doped titanium dioxide photocatalysts was produced and characterized. N-doped TiO2 powder samples were prepared using a sol-gel method and subsequently used for making doped-TiO2 thin films on glass substrates. Carbon layers were coated on the films by a thermal decomposition method using catechol. Diffuse reflectance spectra and Mott-Schottky analyses of the samples proved that nitrogen doping and carbon coating can slightly lower the band gap of TiO2, broaden its absorption to visible light and enhance its n-type character. According to photocatalytic tests against model contaminants, carbon-coated nitrogen-doped TiO2 films have better performance than simple TiO2 on the degradation of Rhodamine B dye molecules, but are poorly effective for degrading 4-chlorophenol molecules. Several possible explanations are proposed for this result, supported by scavenging experiments. This reveals the importance of a broad substrate scope when assessing new photocatalytic materials for water treatment, something which is often overlooked in many literature studies.  相似文献   
19.
The aim of the study was the rapid green synthesis of titanium nanoparticles using the aqueous extract of Falcaria vulgaris leaves (TiNPs@FV) and exploring their antioxidant, cytotoxicity, antifungal, antibacterial, and cutaneous wound healing activities under in vitro and in vivo condition. These nanoparticles were characterized by UV-Vis, Fourier transform-infrared(FT-IR), X-ray diffraction XRD), field emission-scanning electron microscopy FE-SEM), and transmission electron microscopy TEM) analyses. The synthesized TiNPs@FV had great cell viability on human umbilical vein endothelial cells and indicted this method was nontoxic. DPPH (2,2-diphenyl-1-picrylhydrazyl) test revealed similar antioxidant potentials for F. vulgaris, TiNPs@FV, and butylated hydroxytoluene. All data of antibacterial, antifungal, and cutaneous wound healing tests were analyzed by SPSS 22 software. In the antimicrobial part of this study, TiNPs@FV indicated higher antifungal and antibacterial effects than all standard antibiotics (p ≤ 0.01). Minimal inhibitory concentration (MIC) and minimal fungicidal concentration of TiNPs@FV against all fungi were at 2–4 mg/mL and 2-8 mg/mL ranges, respectively. But, MIC and minimal bactericidal concentration of TiNPs@FV against all bacteria were at 2-8 mg/mL and 2-16 mg/mL ranges, respectively. In the part of cutaneous wound healing, use of TiNPs@FV ointment significantly (p ≤ 0.01) raised the wound contracture, vessel, hydroxyl proline, hexuronic acid, hexosamine, fibrocyte, and fibrocytes/fibroblast rate and significantly (p ≤ 0.01) decreased the wound area, total cells, neutrophil, and lymphocyte compared to other groups in rats. The results of FT-IR, UV-Vis, XRD, TEM, and FE-SEM confirm that the aqueous extract of F. vulgaris leaves can be used to yield titanium nanoparticles with a notable amount of remedial effects.  相似文献   
20.
The rational design of highly active hexagonal boron nitride (h-BN) catalysts at the atomic level is urgent for aerobic reactions. Herein, a doping impurity atom strategy is adopted to increase its catalytic activities. A series of doping systems involving O, C impurities and B, N antisites are constructed and their catalytic activities for molecular O2 have been studied by density functional theory (DFT) calculations. It is demonstrated that O2 is highly activated on ON and BN defects, and moderately activated on CB and CN defects, however, it is not stable on NB and OB defects. The subsequent application in oxidative desulfurization (ODS) reactions proves the ON and C-doped (CB, CN) systems to be good choice for sulfocompounds oxidization, especially for dibenzothiophene (DBT). While the BN antisite is not suitable for such aerobic reaction due to the extremely stable B−O*−B species formed during the oxidation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号